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FIXED ACCURACY ESTIMATION OF AN AUTOGRESSIVE PARAMETER
BY T. L. LAI and D. SIEGMUND
s / ABSTRACT
" For a first order non-explosive autoregressive process with unknowm
parameter B¢ [-1,1], it is shown that if data are collected according
to a particular stopping rule, the least squares estimator of 8 is
asymptotically normally distributed uniformly in 8. In the case of
normal residuals, the stopping rule may be interpreted as sampling until
the observed Fisher information reaches a preassigned level. The situation
is contrasted with the fixed sample size case, wvhere the estimator has a

non-normal limiting distribution when |B8] = 1,

AMS 1970 Subject Classification: Primary 62L10

Key Words and Phrases. Stopping rule, fixed width confidence interval,

uniform asymptotic normality.




FIXED ACCURACY ESTIMATION OF AN AUTOREGRESSIVE PARAMETER

1. Introduction and Summary.

Congider the first order, non-explosive, autoregressive model

1.1) x, = an 1 + €, (n=1,2,,,.) ,

where el,ez,... are independent, identicall; distributed random variables

2 2

=0 and 0 < Eel = g° < @, The initial state x is a random

with Eel 0
variable (not depending on B) which is stochastically independent of {en}.
The constant fec[-1,1] is an unknown parameter, which at stage n 1is

customarily estimated by the least squares estimate,

n n 2 n n 2
(1'2) bn = (1£1xi_1xi)/(iflxi_1) = 8 + (1flxi’1€i)/(§xi-l) .

If the £'s are normally distributed, then bn is also the maximum likeli-

hood estimator of B, and the observed Fisher information about B contained

in xo,xl,...,xn is

a2 _° 2,, M o2
(1.3) - ——E-[B E Xy 1% ~ B°/2 lei-ll -

n o2
L X
dg i=]1 i= 1

{=
It i8 well-known and easy to prove that for fixed Be(-1l,1), as

n > o

o \1/2

(1.4) g2 o) $w0,6h .

Here N(u.az) denotes a normal random variable with mean } and variance

02, and § indicates convergence in law. See, for example, Anderson (1959).
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However, for B = +1, an entirely different limiting distribution occurs
(Rao, 1978). For example, if £ = 1, x - X is the sum of 1i.1.d. random

variables el + oo + en, and summation by parts in (1.2) yields

n n n
2 \1/2, . _1-1,2 2 %2 2% 2 1/
(121‘ 1_1) (bn 1) =3n (xn X, iei)/ (n 1§1x1‘1) .

By Donsker's theorem this converges in law to
g 1 1/2
a.s) Set -/ ([ ant/?
0

where {W(t), 0 < t < 1} 1is a standard Brownian motion process, Of course,
this result indicates that the asymptotic normality of (1.4) breaks down for
B in a neighborhood of +1, in the sense that for any given n, no matter
how large, there will be a neighborhood of +1 in which one should not expect
(1.4) to yield reasonable approximations.

Examples in econometrics having values of B8 close to 1 are cited by
Evans and Savin (1981) and by Fuller (1981).

In this paper we consider the asymptotic behavior of {bn} under a
sequential sampling scheme which measures time in terms of accumulated

(observed) Fisher information, Define

n
(1.6) N = first n > 1 such that sz > ccz .
¢ - 1 1-1

Our principal result (Theorem 2.1) is that as c + =

1/2

¢ 2 £ 2
1.7 (}l:xi_l) (b“e-B) * N(0,0)

uniformly in B for -1 <B< 1.
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The sampling rule (1.6) is motivated by the theory of fixed width
confidence intervals, cf. Anscombe (1953), Chow and Robbins (1965), or
Grambsch (1982), Some precedent for the rather surprising uniformity in
the convergence of (1.7) is found in the work of Siegmund (1981), although
the underlying reasons are quite different in the present case.

When it is feasible to use the sampling rule (1.6), its advantages
appear to be threefold: (i) the accuracy of bN as an estimator of B (as
measured by the variance of its asymptotic distgibution) is approximately a
small constant ¢ Y, rather than an uncontrolled random variable, (ii) the
appropriate asyamptotic distribution theory does not depend on the value
of the unknown purameter B8; and (iii) the convergence to asymptotic normality
is much more rapid, even when 8 is not near the values +1. (See Section 3.)

The remainder of this paper is arranged as follows, Section 2 contains
a proof of (1.7). In Section 3 we give the results of some simulations
comparing confidence intervals obtained by indiscriminate use of (1.4) for
fixed sample sizes with (1.7) for sequentially determined sample sizes.
Section 4 is concerned with some related asymptotic results, and in particular
the appropriate modification of (1.6) when o 18 unknown,

Partial results for the model x =o +fx , + €  indicate that the
multiparameter case can be appreciably more complicated. We expect to

consider this problem in the future.

2. Uniform Asymptotic Normality of bN .

c
The main result of this section is the proof of (1.7) (Theorem 2.1

below). Our approach is motivated by the observation that bn- B =

n n
I x,_,€ /L xi 18 of the form of a martingale divided by the sum of
quy 1714 gy 172
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the conditional variances of its increments. The novelty of our approach
lies in systematic exploitation of the conditfion (2.6) and the simple

identity (2.16). We begin with some preliminary probabilistic results.

Proposition 2.1. Let X €= 0,1,... be random variables adapted
to the increasing sequence of o-algebras Sn, n+=0,1,... . Let

{P,, 0eZ} be a family of probability measures such that under every l’9

2

2.1) €1s€gs... are i.i.d, with Beel =0, Eeel =1
(2.2) a\enp Be{ei;lell >al+0 as a+=»;
(2.3) €, 1is independent of J _, for each n 21 ;
.2
(2.4) pe{ [Lx ==} =1;
i=(
(2.5) sup Pa{x: >a} +0 as a+» for each n>0 ;
o
2 ™1,
(2.6) lim (sup Pe{xn 28 Ix; for some n >m}] =0 .
m>o 0 1=0
For ¢ >0 let
22
2.7) T, = iof{n: Ix; , > c} (iof ¢ = + =)
1

Then uniformly in 6¢E and - < t <=

T
(2.8) ro{e'l’z I x
11

4164 S €1+ ¥(t) as c o+,
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Remark. For the autoregressive model (1.1), if we identify 0 with

the autoregressive parameter B, all the conditions of Proposition 2.1
are trivially verified, with the single exception of (2.6).

Proposition 2.1 is proved by reducing it to the following convenient
martingale central limit theorem (cf. Freedman, 1971, pp. 90-92).

Lemma 2.1, Given 0 < § < 1, there exists p(8§) > 0 with 1im p(8) =0
§+0

such that for any martingale difference sequence {un, 3n’ n > 0} satisfying

(2.9) lu | < & for a1l =

and
o2

(2.10) i Eu |3 ) >r a8 ,
2

if T = inf{n: I EQu{|F, _,) > r}, then P{r <o} =1
AR Lt T iy

and

T
sup|P(Z u, < x} - 0x/etD)| < otsret’D .
x 1

Proof of Proposition 2.1.

By (2.4) PG{TC < @} = 1, and obviously ’e{cli‘.."c = o} = 1 for

/2

all 6. Let 0< 8 <1 and define in -x if x;‘:f_ 62c and iu - 6c1

otherwise. Then for all 6

I’e{xu ¢ X, for some n < 'l'c}

A

™
151 Pe{xi_l > 62c} + Pa{'rc >m, X ] ;n for some m < n < T}

-1
. 2 2 2, 2% 2
L Pxi , > 8%} +P{x_>6" L x; forsome n>u} ,
jop o -1 0" n o 1

IA
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wvhich ie < 28 if we first choose m large enough and use (2.6), then
cthoose ¢ large and use (2.5). Hence if

nc-{xn-xn for all n<'rc} .
then for all large ¢

(2.11) PQ) > 1 - 28

-1/2

~ z ~
Define £ = e, I{le,| <&'°} and € =€ - &. Then under P

n n -]

{c‘llzin_l(in-zeEn), F,0<n< o} 4is a martingale difference sequence

satisfying
-1/2- x _pox 1/2
[ S G Eeen)l < 26 T

and by (2.4)

- =2

Pe(X X' mw}al

o P

also by (2.2), as 6§+ 0

(2.12) ve(G) - vareEI +1

uniformly in 6. Hence, if

n ,
T, = inf{a: f X >c}

then by Leama 2.1




- T - ~ ~
Y2 3R € RE) <t} - 0t/ (gD | < pl2csmvgant?y

(2.13) |P,{c
o 1l

On Qc, L Tc and

T T T - .
(2.14) IE X, (€ -EgE)) - f X 1640 = |§ X, _ (€ -Ege)| .
By Wald's identity (cf. Chow, Robbins, and Siegmund, 1971, p. 23)

-1/2 1.

: . - T
L, @15 Byle™ P TR, @ -2gf1? = ¢ Qv (o072 E] )

< (L-vg(8)) (1+6%)

s The Proposition follows from (2.11)-(2.15) by letting 6 -+ 0.
For ease of reference we state without proof the following lemma.
It 18 related to the strong law of large numbers given e.g. by Neveu

(1965, p. 148), whose method of proof can be adapted to the present purpose.

Alternatively it follows easily from Proposition 2 of Robbins and Siegmund

(1971) and a straightforward calculation along the lines of their Lemma 1.

Lemma 2.2. Under the measurability assumptions of Proposition 2.1, (2.1),

and (2.3), for each Y’“% and increasing sequence of positive constants

! c, T+ and for each § > 0
n n 2 Y
s;p Pe{li x,_1€;] 2 6 max (cn.(f x;_y)') for some n >m} +0

a8 m > »,
We now return to the autoregressive model (1.1) and write PB to denote

dependence of probabilities on the parameter 8. (The joint distribution of




xo.sl.ez..... however, is assumed not to depend on fB.) The principal

result of this section is

Theorem 2.1. Define {bn’ n=2,3,...} by (1.2) and Nc by (1.6).
1f el,ez.... are 1.1.d. wvith mean 0 and variance oz. and are
independent of Xgs then

N
c

L1m Pgl(E x{_y) by -8) < t} = 0(t/o)

Cc > o

uniformly for -1 < <1 and ~» < t < o,

Proof. Theorem 2.1 follows immediately from Proposition 2.1 once we have
varified (2.6). To this end, note that squaring (1.1) and summing yields
n-1

(2.16) 2+ (1-8%) £ x2-x%=
n 1=0 i 0

n
+28 L x, e, .

2
€
1 gy 1151

[l B

Let |8] <1 and 0 < A < 0%/4. Let

2

2/3
1-1)

a4 2, n n
(2.17) Qm’x-{|n f €5-0" | <, If ®y 18] < m(kn,(i x ) for all n>m} .

on 0 ., 4f n>m and x> < An, then (2.16) implies
-’A - n—
e 3 2 23
z x1_>_(c -A)a -~ An - 2max (An, (I x; 1) )
0 ) U

and hence for all m sufficiently large

n-1
(2.19) 2 I %2> (oP-ahm 2 (oA lea)s?
0 n
8
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On the other hand, since |x | 3_|an_l| 2 |x | - [e |, it follows

that
k-1 k-1 1/2
L e gl 2 bl = Doyl 2 bl - e 170w %)

if xi'i An. Hence n > k and xﬁ > An  imply

n-1 k-1

2 2 2 1/2
(2.19) g Xy /x 2 k{1 - I |en_j|/(xn) } s
j=0
k-1 ;
and since I len-j,’ n = k,k+l,... are i.i,d. with finite second moment, :
j=0

the right hand side of (2.19) converges to kz with probability one, at a

rate which does not involve 8. Hence by choosing ) so small that

2/(*A\71-4) < & and k2 > 1/§, we see by (2.18) and (2.19) that

2 1,
lim sup PB{xn > 8§ L x; for some n > m}
m+e|8] <1 0

< 1im  sup P(2° ) ,
mso gl <1 B ™)

which equals 0 by Lemma 2.2 and the strong law of large numbers. This

establishes (2.6) and hence the theorem.

3. Monte Carlo Results.

In this section we report the results of a Monte Carlo experiment to

compare the fixed sample size and sequential asymptotic distributions. The

basic experiment to assess the accuracy of the normal approximation indicated
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by (1.4) and (1.7) consisted of a frequency count of the number of times !
the normalized estimator of B exceeded z or was less than -z for
commonly used quantiles z of the standard normal distribution. Since
very similar results were obtained for various 2z, we report here only
for z = 1.28, for which the (one-tailed) probabilities are nominally
0.10. For simplicity X = 0, and €1sEpseee Were taken to be N(0,l1).
In the fixed sample experiment, n = 50 observations were taken; and the
results are reported in Table 1. In Table 2 observations are taken
sequentially with ¢ chosen so that E

e = 50 for all fB; in Table

3 ¢ =50 and EBNc varies with B8.

For normally distributed €y bn (bN ) fails to be normally distributed

; c
no, Ne 2
only because of variability in i Xy (i x;_1)- (See Dvoretzky, 1972, p. 520)

Of course, the sequential experiment is designed to reduce this variability.
The columns of Tables 1-3 below with the headings a and s, Treport

the observed average and standard deviation of Exi_l respectively.
Variability for in_l in the fixed sample experiment goes into variability

in Nc for the sequential experiment, so Tables 2 and 3 also report estimates

1/2
g )
sample size case and (varsnc)llzlEBNc for the sequential case increase

of EBNc and (var . Note that variability in Exi_l for the fixed
dramatically as B approaches one.

The columns headed ﬁr and Sz report the percentage of excesses in
the right and left tails of the distributions. i

The figures in Tables 1 and 2 indicate that the fixed sample size

asymptotic theory is not especially good when n = 50, even for small IBI,
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o

m= 50, z=1,28, P,

TABLE 1

1.:2d Sample

Case

and Py are nominally 0.10

~

8 Pr Py 8rx S xx
0.1 .084 .108 49 10
0.5 .086 .118 65 18
0.9 .052 .136 232 136
1.0 .048 .166 1272 1505

TABLE 2

Sequential Case

z = 1.28, P, and py are nominally 0.10

~ - 1/2
B P, Py c a8 5. x EBNc (varBNc)
0.1 .094 .105 50 52 1.7 52 10
0.5 .103 .096 65 67 2,2 52 13
0.9 .103 .099 200 207 8.0 51 21
1.0 .098 .101 500 524 22 48 24

TABLE 3
Sequential Case
c =50, z=1.28, P, and py are nominally 0.10

~ ~ 1/2

B Py Py - 8 x Es(“c) (var Buc)
.5 .097 .099 52 2.4 41 11

.9 .092 .102 55 5.4 20 9.0
1.0 .108 .107 58 8.2 16 7.6
1.1 .096 .093 61 10 13 5.9

11




and it deteriorates quite noticeably for B near 1. In the sequential
case the asymptotic theory is much better and shows no dependence upon

the value of B8.

4. Additional Asymptotic Theory.

Here we give some additional asymptotic results, which follow from
the techniques developed in Section 2. Theorem 4.1 describes the asymptotic
behavior of Nc, and to some extent explains the rather surprising differences

between the fixed sample "and sequential cases. Theorem 4.2 is concerned

n
with the uniform strong consistency of b_ and 52 - n‘l L (x,-b x )2.
n n ju1 1O i-1

It provides the foundation for consideration of the case of unknown o.

Theorem 4.1. Under the conditions of Theorem 2.1,
(1) for each Be(-1,1), PB{ 1lim c-lﬂc - (1-82)} =1,

C > ®
and

-1/2

t
1) for |8 = 1, M2 ¥ tne(e:s Wiodds = 1},
0

where W(t), 0 < t < ®, is a standard Brownian motion process.

Remark. In addition to containing information on the sample size of our
sequential procedure, Theorem 4.1 has interesting connections with Theorem 2.1
and a theorem of Anscombe (1952). As generalized by MogyorSdi (1962) Anscombe's
theorem says that if Yn £ Y, some additional technical conditions are satisfied,
and 1f v(c) are integer-valued random variables which can be normalised

by constants Kk(c) + +% 1in such a way that v(c)/k(c) converges in

probability to a positive random variable, then !v ) £ Y. BRence (1.4),
Theorem 4.1 (1), and Anscombe's theorem show that (:1:° 2 Y 2(1:“‘-3) £ o,

12
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for each fixed Be(-1,1). However, because the convergence of Theoream
4.1 (i1) is in law and not in probability, Anscombe's theorem is not

applicable for |B| = 1, and in fact its conclusion would be incorrect.

Proof of Theorem 4.1.

On the event ﬁn A defined in (2.17), (2.16) implies for all n> m

2 _ .2 2, % 2 2 2.2 .2/3
(4.1) |xn - x5 + (1-8") )l: X3 - 09 ] < 3n+ 2(§ x; 1) .

2 |

If |B] 1s bounded away from 1, say |B| < p <1, so 1-82_>.1-p >0,

then (2.6), (4.1), and Pan A) + 1 (uniformly in 8) imply that

2

2
4o = 9| 2 8 for some n>n}l =0 .

2, -1 3
(4.2) 1lim sup PB{|(1-B )Jn T L x
m+o |8 <p 1
Theorem 4.1 (1) follows easily from (4.2).
If B=1, then X, =X, + Sn, where Sn - el + ooe # en. Thus

Theorem 4.1 (ii) follows from Donsker's Theorem, which implies that

1/2
{c™' Tt} t
etz Si, t > 0} $ (o Sulksras, ¢ >0} .
i=1 0

A similar but slightly more complicated argument handles the case f = -1,

Theorem 4.2. Define the least squares eatimate for B as in (1.2), and

in the case of unknown ¢, estimate 02 at stage n by
n
~2 -1 2
(4.3) o, =0 1:21 (x i-bnx 1_1) .

Then b and 3: are uniformly consistent for |8 <1 in the sense that

for all 6§ >0

13
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Proof. From (2.6), (2.16), and (4.2) it is easy to see that for all

(4.8) lim sup PB{Ibn-BI >8 forsome n>m}=0
m+e |B] <1

and

(4.5) lim sup PB{Iaﬁ-ozl >6 forsome n>m} =0 .

m+o [B] <1

0<A<1

2

n
sup PB{n z x:_l < Ag” for some n >m} + 0 m+o)
1

8] <1

which together with (1.2) and Lemma 2.2 proves (4.4).

To prove (4.5) note that

a2 -1 1 2
ah = n 1Zl(e + (8-b )x:l 1)
(4.6)

-1

- 2 1 2
i

-(2:: e)?m I x .
o LT 4y 10l

€

[l o -

For |B] <1, |x ] < |xy| + Z le | = U, say, vhere the distribution of
-1
2 2

< Z v

1e1 < " o(n ) with

Un does not depend on 8. Horeovct, 2 x

probability one. Hence by Lemma 2,2
@, m, |
1im  sup re{(z X, 16)° 26 Zx, , foreome n2>m}=0 ,
mn+o B <1 1 1
which along with (4.6) and the strong law of large numbers implies (4.5).
With the help of (4.5) it is possible to modify the definition of lc

to handle the case of unknown ©. The following result can be proved along

14
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the lines of Theorem 2.1, although the details are considerably more

complicated. The proof is omitted.

Theorem 4.3. Define b by (1.2) and 52 by (4.3). Let {5} bea

sequence of positive constants with 6n + 0. Let l: = m(Gn.ag) and

for ¢ > 0 define
A 32 2
“%.7) N, = inf{n: n > 2, I Xy 2 “n} .

Then ag8 ¢ >

"N

N
e 2 \1/2,.,. a0,
PB{(f xi 1) (ch B)/O'Nc <t} + o(r)

uniformly in |B] <1 and - <t <o,

15
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FIXED ACCURACY ESTIMATION OF AN AUTOGRESSIVE PARAMETER

BY T. L. LAL and D, SIEGMUND

ABSTRACT

For a first order non-explosive autoregressive process with unknown
parameter Be [-1,1], it is shown that if data are collected according
to a particular stopping rule, the least squares estihator of B 1is
asymptotically normally distributed uniformly in 8, In the case of
normal residuals, the stopping rule may be interpreted as sampling until
the observed Fisher information reﬂéhel a preassigned level. The gituation
is contrasted with the fixed sample size case, where the estimator has a

non-normal limiting distribution when |B| = 1.
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